Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
2.
J Exp Med ; 221(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442267

RESUMO

Alzheimer's disease (AD) is characterized by amyloid plaques and neurofibrillary tangles, in addition to neuroinflammation and changes in brain lipid metabolism. 25-Hydroxycholesterol (25-HC), a known modulator of both inflammation and lipid metabolism, is produced by cholesterol 25-hydroxylase encoded by Ch25h expressed as a "disease-associated microglia" signature gene. However, whether Ch25h influences tau-mediated neuroinflammation and neurodegeneration is unknown. Here, we show that in the absence of Ch25h and the resultant reduction in 25-HC, there is strikingly reduced age-dependent neurodegeneration and neuroinflammation in the hippocampus and entorhinal/piriform cortex of PS19 mice, which express the P301S mutant human tau transgene. Transcriptomic analyses of bulk hippocampal tissue and single nuclei revealed that Ch25h deficiency in PS19 mice strongly suppressed proinflammatory signaling in microglia. Our results suggest a key role for Ch25h/25-HC in potentiating proinflammatory signaling to promote tau-mediated neurodegeneration. Ch25h may represent a novel therapeutic target for primary tauopathies, AD, and other neuroinflammatory diseases.


Assuntos
Esteroide Hidroxilases , Tauopatias , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Doenças Neuroinflamatórias , Esteroide Hidroxilases/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia
3.
Cell Death Discov ; 10(1): 83, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365891

RESUMO

Biliary tract cancers (BTCs) are relatively rare malignancies with a poor prognosis. For advanced BTCs, the efficacy of current chemotherapeutic approaches is limited. Consequently, there is an urgent need to deepen our understanding of the molecular mechanisms underlying BTC tumorigenesis and development for the exploration of effective targeted therapies. N6-methyladenosine (m6A), the most abundant RNA modifications in eukaryotes, is found usually dysregulated and involved in tumorigenesis, progression, and drug resistance in tumors. Numerous studies have confirmed that aberrant m6A regulators function as either oncogenes or tumor suppressors in BTCs by the reversible regulation of RNA metabolism, including splicing, export, degradation and translation. In this review, we summarized the current roles of the m6A regulators and their functional impacts on RNA fate in BTCs. The improved understanding of m6A modification in BTCs also provides a reasonable outlook for the exploration of new diagnostic strategies and efficient therapeutic targets.

4.
Nat Commun ; 15(1): 1434, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365772

RESUMO

Comorbid proteinopathies are observed in many neurodegenerative disorders including Alzheimer's disease (AD), increase with age, and influence clinical outcomes, yet the mechanisms remain ill-defined. Here, we show that reduction of progranulin (PGRN), a lysosomal protein associated with TDP-43 proteinopathy, also increases tau inclusions, causes concomitant accumulation of α-synuclein and worsens mortality and disinhibited behaviors in tauopathy mice. The increased inclusions paradoxically protect against spatial memory deficit and hippocampal neurodegeneration. PGRN reduction in male tauopathy attenuates activity of ß-glucocerebrosidase (GCase), a protein previously associated with synucleinopathy, while increasing glucosylceramide (GlcCer)-positive tau inclusions. In neuronal culture, GCase inhibition enhances tau aggregation induced by AD-tau. Furthermore, purified GlcCer directly promotes tau aggregation in vitro. Neurofibrillary tangles in human tauopathies are also GlcCer-immunoreactive. Thus, in addition to TDP-43, PGRN regulates tau- and synucleinopathies via GCase and GlcCer. A lysosomal PGRN-GCase pathway may be a common therapeutic target for age-related comorbid proteinopathies.


Assuntos
Doença de Alzheimer , Deficiências na Proteostase , Tauopatias , Masculino , Humanos , Camundongos , Animais , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Progranulinas , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo
5.
Diabetes ; 73(2): 197-210, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935033

RESUMO

Partial leptin reduction can induce significant weight loss, while weight loss contributes to partial leptin reduction. The cause-and-effect relationship between leptin reduction and weight loss remains to be further elucidated. Here, we show that FGF21 and the glucagon-like peptide 1 receptor (GLP-1R) agonist liraglutide rapidly induced a reduction in leptin. This leptin reduction contributed to the beneficial effects of GLP-1R agonism in metabolic health, as transgenically maintaining leptin levels during treatment partially curtailed the beneficial effects seen with these agonists. Moreover, a higher degree of leptin reduction during treatment, induced by including a leptin neutralizing antibody with either FGF21 or liraglutide, synergistically induced greater weight loss and better glucose tolerance in diet-induced obese mice. Furthermore, upon cessation of either liraglutide or FGF21 treatment, the expected immediate weight regain was observed, associated with a rapid increase in circulating leptin levels. Prevention of this leptin surge with leptin neutralizing antibodies slowed down weight gain and preserved better glucose tolerance. Mechanistically, a significant reduction in leptin induced a higher degree of leptin sensitivity in hypothalamic neurons. Our observations support a model that postulates that a reduction of leptin levels is a necessary prerequisite for substantial weight loss, and partial leptin reduction is a viable strategy to treat obesity and its associated insulin resistance.


Assuntos
Leptina , Liraglutida , Animais , Camundongos , Leptina/metabolismo , Liraglutida/farmacologia , Obesidade , Redução de Peso , Glucose/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
6.
Abdom Radiol (NY) ; 49(1): 3-10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37787963

RESUMO

OBJECTIVE: Our study aimed to determine whether radiomics models based on contrast-enhanced computed tomography (CECT) have considerable ability to predict serosal involvement in gallbladder cancer (GBC) patients. MATERIALS AND METHODS: A total of 152 patients diagnosed with GBC were retrospectively enrolled and divided into the serosal involvement group and no serosal involvement group according to paraffin pathology results. The regions of interest (ROIs) in the lesion on all CT images were drawn by two radiologists using ITK-SNAP software (version 3.8.0). A total of 412 features were extracted from the CT images of each patient. The Mann‒Whitney U test was applied to identify features with significant differences between groups. Seven machine learning algorithms and a deep learning model based on fully connected neural networks (f-CNNs) were used for radiomics model construction. The prediction efficacy of the models was evaluated using receiver operating characteristic (ROC) curve analysis. RESULTS: Through the Mann‒Whitney U test, 75 of the 412 features extracted from the CT images of patients were significantly different between groups (P < 0.05). Among all the algorithms, logistic regression achieved the highest performance with an area under the curve (AUC) of 0.944 (sensitivity 0.889, specificity 0.8); the f-CNN deep learning model had an AUC of 0.916, and the model showed high predictive power for serosal involvement, with a sensitivity of 0.733 and a specificity of 0.801. CONCLUSION: Radiomics models based on features derived from CECT showed convincing performances in predicting serosal involvement in GBC.


Assuntos
Aprendizado Profundo , Neoplasias da Vesícula Biliar , Humanos , Neoplasias da Vesícula Biliar/diagnóstico por imagem , Estudos Retrospectivos , Aprendizado de Máquina
7.
Biomed Chromatogr ; 38(3): e5795, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38071756

RESUMO

Following the highly successful Chinese American Society for Mass Spectrometry (CASMS) conferences in the previous 2 years, the 3rd CASMS Conference was held virtually on August 28-31, 2023, using the Gather.Town platform to bring together scientists in the MS field. The conference offered a 4-day agenda with a scientific program consisting of two plenary lectures, and 14 parallel symposia in which a total of 70 speakers presented technological innovations and their applications in proteomics and biological MS and metabo-lipidomics and pharmaceutical MS. In addition, 16 invited speakers/panelists presented at two research-focused and three career development workshops. Moreover, 86 posters, 12 lightning talks, 3 sponsored workshops, and 11 exhibitions were presented, from which 9 poster awards and 2 lightning talk awards were selected. Furthermore, the conference featured four young investigator awardees to highlight early-career achievements in MS from our society. The conference provided a unique scientific platform for young scientists (i.e. graduate students, postdocs, and junior faculty/investigators) to present their research, meet with prominent scientists, learn about career development, and job opportunities (http://casms.org).


Assuntos
Espectrometria de Massas , Lipidômica , Preparações Farmacêuticas , Proteômica , Congressos como Assunto
9.
Mol Psychiatry ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135757

RESUMO

ABCA7 loss-of-function variants are associated with increased risk of Alzheimer's disease (AD). Using ABCA7 knockout human iPSC models generated with CRISPR/Cas9, we investigated the impacts of ABCA7 deficiency on neuronal metabolism and function. Lipidomics revealed that mitochondria-related phospholipids, such as phosphatidylglycerol and cardiolipin were reduced in the ABCA7-deficient iPSC-derived cortical organoids. Consistently, ABCA7 deficiency-induced alterations of mitochondrial morphology accompanied by reduced ATP synthase activity and exacerbated oxidative damage in the organoids. Furthermore, ABCA7-deficient iPSC-derived neurons showed compromised mitochondrial respiration and excess ROS generation, as well as enlarged mitochondrial morphology compared to the isogenic controls. ABCA7 deficiency also decreased spontaneous synaptic firing and network formation in iPSC-derived neurons, in which the effects were rescued by supplementation with phosphatidylglycerol or NAD+ precursor, nicotinamide mononucleotide. Importantly, effects of ABCA7 deficiency on mitochondria morphology and synapses were recapitulated in synaptosomes isolated from the brain of neuron-specific Abca7 knockout mice. Together, our results provide evidence that ABCA7 loss-of-function contributes to AD risk by modulating mitochondria lipid metabolism.

11.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38106102

RESUMO

Phospholipase C gamma-2 (PLCγ2) catalyzes the hydrolysis of the membrane phosphatidylinositol-4,5-bisphosphate (PIP2) to form diacylglycerol (DAG) and inositol trisphosphate (IP3), which subsequently feed into numerous downstream signaling pathways. PLCG2 polymorphisms are associated with both reduced and increased risk of Alzheimer's disease (AD) and with longevity. In the brain, PLCG2 is highly expressed in microglia, where it is proposed to regulate phagocytosis, secretion of cytokines/chemokines, cell survival and proliferation. We analyzed the brains of three-month-old PLCγ2 knockout (KO), heterozygous (HET), and wild-type (WT) mice using multiomics approaches, including shotgun lipidomics, proteomics, and gene expression profiling, and immunofluorescence. Lipidomic analyses revealed sex-specific losses of total cerebrum PIP2 and decreasing trends of DAG content in KOs. In addition, PLCγ2 depletion led to significant losses of myelin-specific lipids and decreasing trends of myelin-enriched lipids. Consistent with our lipidomics results, RNA profiling revealed sex-specific changes in the expression levels of several myelin-related genes. Further, consistent with the available literature, gene expression profiling revealed subtle changes on microglia phenotype in mature adult KOs under baseline conditions, suggestive of reduced microglia reactivity. Immunohistochemistry confirmed subtle differences in density of microglia and oligodendrocytes in KOs. Exploratory proteomic pathway analyses revealed changes in KO and HET females compared to WTs, with over-abundant proteins pointing to mTOR signaling, and under-abundant proteins to oligodendrocytes. Overall, our data indicate that loss of PLCγ2 has subtle effects on brain homeostasis that may underlie enhanced vulnerability to AD pathology and aging via novel mechanisms in addition to regulation of microglia function.

13.
PLoS One ; 18(12): e0292820, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127988

RESUMO

Mating and receipt of male Sex Peptide hormone cause increased egg laying, increased midgut size and decreased life span in female Drosophila. Feeding mated females with the synthetic steroid mifepristone decreases egg production, reduces midgut size, and increases life span. Here, several gene mutations were assayed to investigate possible mechanisms for mifepristone action. Drosophila Dhr96 is a hormone receptor, and a key positive regulator of midgut lipid uptake and metabolism. Dhr96[1] null mutation increased female life span, and reduced the effects of mifepristone on life span, suggesting that Dhr96[1] mutation and mifepristone may act in part through the same mechanism. Consistent with this idea, lipidomics analysis revealed that mating increases whole-body levels of triglycerides and fatty-acids in triglycerides, and these changes are reversed by mifepristone. Maternal tudor[1] mutation results in females that lack the germ-line and produce no eggs. Maternal tudor[1] mutation increased mated female life span, and reduced but did not eliminate the effects of mating and mifepristone on life span. This indicates that decreased egg production may be related to the life span benefits of mifepristone, but is not essential. Mifepristone increases life span in w[1118] mutant mated females, but did not increase life span in w[1118] mutant virgin females. Mifepristone decreased egg production in w[1118] mutant virgin females, indicating that decreased egg production is not sufficient for mifepristone to increase life span. Mifepristone increases life span in virgin females of some, but not all, white[+] and mini-white[+] strains. Backcrossing of mini-white[+] transgenes into the w[1118] background was not sufficient to confer a life span response to mifepristone in virgin females. Taken together, the data support the hypothesis that mechanisms for mifepristone life span increase involve reduced lipid uptake and/or metabolism, and suggest that mifepristone may increase life span in mated females and virgin females through partly different mechanisms.


Assuntos
Drosophila , Mifepristona , Animais , Feminino , Masculino , Drosophila melanogaster/genética , Lipídeos/farmacologia , Longevidade/genética , Mifepristona/farmacologia , Mutação , Comportamento Sexual Animal/fisiologia , Triglicerídeos/farmacologia
14.
PLoS Biol ; 21(11): e3002367, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37967106

RESUMO

In mammals, O2 and CO2 levels are tightly regulated and are altered under various pathological conditions. While the molecular mechanisms that participate in O2 sensing are well characterized, little is known regarding the signaling pathways that participate in CO2 signaling and adaptation. Here, we show that CO2 levels control a distinct cellular transcriptional response that differs from mere pH changes. Unexpectedly, we discovered that CO2 regulates the expression of cholesterogenic genes in a SREBP2-dependent manner and modulates cellular cholesterol accumulation. Molecular dissection of the underlying mechanism suggests that CO2 triggers SREBP2 activation through changes in endoplasmic reticulum (ER) membrane cholesterol levels. Collectively, we propose that SREBP2 participates in CO2 signaling and that cellular cholesterol levels can be modulated by CO2 through SREBP2.


Assuntos
Dióxido de Carbono , Colesterol , Animais , Colesterol/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Mamíferos/metabolismo
15.
Sci Transl Med ; 15(723): eade8460, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37992151

RESUMO

Despite their high degree of effectiveness in the management of psychiatric conditions, exposure to antipsychotic drugs, including olanzapine and risperidone, is frequently associated with substantial weight gain and the development of diabetes. Even before weight gain, a rapid rise in circulating leptin concentrations can be observed in most patients taking antipsychotic drugs. To date, the contribution of this hyperleptinemia to weight gain and metabolic deterioration has not been defined. Here, with an established mouse model that recapitulates antipsychotic drug-induced obesity and insulin resistance, we not only confirm that hyperleptinemia occurs before weight gain but also demonstrate that hyperleptinemia contributes directly to the development of obesity and associated metabolic disorders. By suppressing the rise in leptin through the use of a monoclonal leptin-neutralizing antibody, we effectively prevented weight gain, restored glucose tolerance, and preserved adipose tissue and liver function in antipsychotic drug-treated mice. Mechanistically, suppressing excess leptin resolved local tissue and systemic inflammation typically associated with antipsychotic drug treatment. We conclude that hyperleptinemia is a key contributor to antipsychotic drug-associated weight gain and metabolic deterioration. Leptin suppression may be an effective approach to reducing the undesirable side effects of antipsychotic drugs.


Assuntos
Antipsicóticos , Doenças Metabólicas , Humanos , Camundongos , Animais , Antipsicóticos/efeitos adversos , Leptina/metabolismo , Obesidade/metabolismo , Aumento de Peso
16.
Cell Rep ; 42(11): 113214, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37917582

RESUMO

Phosphatidylglycerol (PG) is a mitochondrial phospholipid required for mitochondrial cristae structure and cardiolipin synthesis. PG must be remodeled to its mature form at the endoplasmic reticulum (ER) after mitochondrial biosynthesis to achieve its biological functions. Defective PG remodeling causes MEGDEL (non-alcohol fatty liver disease and 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like) syndrome through poorly defined mechanisms. Here, we identify LPGAT1, an acyltransferase that catalyzes PG remodeling, as a candidate gene for MEGDEL syndrome. We show that PG remodeling by LPGAT1 at the ER is closely coordinated with mitochondrial transport through interaction with the prohibitin/TIMM14 mitochondrial import motor. Accordingly, ablation of LPGAT1 or TIMM14 not only causes aberrant fatty acyl compositions but also ER retention of newly remodeled PG, leading to profound loss in mitochondrial crista structure and respiration. Consequently, genetic deletion of the LPGAT1 in mice leads to cardinal features of MEGDEL syndrome, including 3-methylglutaconic aciduria, deafness, dilated cardiomyopathy, and premature death, which are highly reminiscent of those caused by TIMM14 mutations in humans.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Erros Inatos do Metabolismo , Humanos , Animais , Camundongos , Fosfatidilgliceróis , Perda Auditiva Neurossensorial/genética , Erros Inatos do Metabolismo/genética , Surdez/genética , Cardiolipinas
17.
Nat Commun ; 14(1): 6729, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872178

RESUMO

Mitochondrial function is vital for energy metabolism in thermogenic adipocytes. Impaired mitochondrial bioenergetics in brown adipocytes are linked to disrupted thermogenesis and energy balance in obesity and aging. Phospholipid cardiolipin (CL) and phosphatidic acid (PA) jointly regulate mitochondrial membrane architecture and dynamics, with mitochondria-associated endoplasmic reticulum membranes (MAMs) serving as the platform for phospholipid biosynthesis and metabolism. However, little is known about the regulators of MAM phospholipid metabolism and their connection to mitochondrial function. We discover that LCN2 is a PA binding protein recruited to the MAM during inflammation and metabolic stimulation. Lcn2 deficiency disrupts mitochondrial fusion-fission balance and alters the acyl-chain composition of mitochondrial phospholipids in brown adipose tissue (BAT) of male mice. Lcn2 KO male mice exhibit an increase in the levels of CLs containing long-chain polyunsaturated fatty acids (LC-PUFA), a decrease in CLs containing monounsaturated fatty acids, resulting in mitochondrial dysfunction. This dysfunction triggers compensatory activation of peroxisomal function and the biosynthesis of LC-PUFA-containing plasmalogens in BAT. Additionally, Lcn2 deficiency alters PA production, correlating with changes in PA-regulated phospholipid-metabolizing enzymes and the mTOR signaling pathway. In conclusion, LCN2 plays a critical role in the acyl-chain remodeling of phospholipids and mitochondrial bioenergetics by regulating PA production and its function in activating signaling pathways.


Assuntos
Tecido Adiposo Marrom , Mitocôndrias , Animais , Masculino , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Lipocalina-2/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Plasmalogênios/metabolismo , Termogênese/genética
18.
Res Sq ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37790319

RESUMO

Major Depressive Disorder (MDD) is an often-chronic condition with substantial molecular alterations and pathway dysregulations involved. Single metabolite, pathway and targeted metabolomics platforms have indeed revealed several metabolic alterations in depression including energy metabolism, neurotransmission and lipid metabolism. More comprehensive coverage of the metabolome is needed to further specify metabolic dysregulation in depression and reveal previously untargeted mechanisms. Here we measured 820 metabolites using the metabolome-wide Metabolon platform in 2770 subjects from a large Dutch clinical cohort with extensive depression clinical phenotyping (1101 current MDD, 868 remitted MDD, 801 healthy controls) at baseline and 1805 subjects at 6-year follow up (327 current MDD, 1045 remitted MDD, 433 healthy controls). MDD diagnosis was based on DSM-IV psychiatric interviews. Depression severity was measured with the Inventory of Depressive Symptomatology self-report. Associations between metabolites and MDD status and depression severity were assessed at baseline and at the 6-year follow-up. Metabolites consistently associated with MDD status or depression severity on both occasions were examined in Mendelian randomization (MR) analysis using metabolite (N=14,000) and MDD (N=800,000) GWAS results. At baseline, 139 and 126 metabolites were associated with current MDD status and depression severity, respectively, with 79 overlapping metabolites. Six years later, 34 out of the 79 metabolite associations were subsequently replicated. Downregulated metabolites were enriched with long-chain monounsaturated (P=6.7e-07) and saturated (P=3.2e-05) fatty acids and upregulated metabolites with lysophospholipids (P=3.4e-4). Adding BMI to the models changed results only marginally. MR analyses showed that genetically-predicted higher levels of the lysophospholipid 1-linoleoyl-GPE (18:2) were associated with greater risk of depression. The identified metabolome-wide profile of depression (severity) indicated altered lipid metabolism with downregulation of long-chain fatty acids and upregulation of lysophospholipids, for which causal involvement was suggested using genetic tools. This metabolomics signature offers a window on depression pathophysiology and a potential access point for the development of novel therapeutic approaches.

19.
Int J Surg ; 109(12): 3815-3826, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37830944

RESUMO

BACKGROUND: Solid pseudopapillary neoplasm (SPN) of the pancreas is a rare, low-grade malignant pancreatic tumor with a highly favorable prognosis. Most SPN patients are young and middle-aged women. The main controversial topic for SPN is local resection (LR) versus radical resection (RR). Theoretically, LR could lead to better gastrointestinal function (GIF) and less mental stress. However, no data is available to support this hypothesis. METHODS: All SPN patients undergoing surgical treatment in Peking Union Medical College Hospital from 2001 to 2021 were included in the study. A cross-sectional online multiquestionnaire survey containing 110 questions was sent to them (Clinicaltrial.org, NCT05604716). This online multiquestionnaire survey focused on GIF and mental stress and consisted of eight questionnaires. Multiple linear regression analysis was conducted to identify independent factors impacting GIF and mental stress. RESULTS: A total of 183 cases provided valid results. Among them, 46 patients (25.1%) underwent LR, and 137 (74.9%) underwent RR. Ninety-four cases (51.4%) underwent minimally invasive surgery (MIS), while 89 (48.6%) underwent open surgery. The average GSRS score of the patients was 1.9±0.7, indicating that most suffered from mild gastrointestinal dysfunction. The scores of PHQ-9 and GAD-7 in 16 patients (8.7%) and 27 (14.8%) patients, respectively, were beyond 10.0, which indicated clinical depression and anxiety. Additionally, 19 (10.4%) patients reported poor ability to work, and 31(16.9%) patients had significant body image concerns. Compared to other clinicopathological characteristics, LR (LR vs. RR: PHQ-9 score, P =0.018; WAI average score, P =0.010; EORTC QLQ-C30, nine subdomains, P <0.05; GSRS average score, P =0.006) and MIS (MIS vs. open surgery: EORTC QLQ-C30, three subdomains, P <0.05; GSRS average score, P =0.006) were the most significant factors predicting improved GIF and reduced mental stress. CONCLUSIONS: This study systematically presents postoperative GIF and mental stress of SPN patients using validated multiquestionnaires for the first time. It provides solid evidence that LR and MIS can improve GIF and reduce mental stress after surgery for SPN patients, which could be helpful for the surgeons to make more personalized surgical plans for their patients.


Assuntos
Neoplasias Epiteliais e Glandulares , Neoplasias Pancreáticas , Pessoa de Meia-Idade , Humanos , Feminino , Pancreatectomia/métodos , Estudos Transversais , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/patologia , Pancreaticoduodenectomia , Neoplasias Epiteliais e Glandulares/cirurgia , Inquéritos e Questionários , Pâncreas/cirurgia
20.
bioRxiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693552

RESUMO

The I148M variant of PNPLA3 is strongly linked to hepatic steatosis. Evidence suggests a gain-of-function role for the I148M mutant as an ATGL inhibitor, leaving the physiological relevance of wild-type PNPLA3 undefined. Here we show that PNPLA3 selectively degrades triglycerides (TGs) enriched in polyunsaturated fatty acids (PUFAs) independently of ATGL in cultured cells and mice. Lipidomics and metabolite tracing analyses demonstrated that PNPLA3 mobilizes PUFAs from intracellular TGs for phospholipid desaturation, supporting hepatic secretion of TG-rich lipoproteins. Consequently, mice with liver-specific knockout or acute knockdown of PNPLA3 both exhibited aggravated liver steatosis and concomitant decreases in plasma VLDL-TG, phenotypes that manifest only under lipogenic conditions. I148M-knockin mice similarly displayed impaired hepatic TG secretion during lipogenic stimulation. Our results highlight a specific context whereby PNPLA3 facilitates the balance between hepatic TG storage and secretion and suggest the potential contributions of I148M variant loss-of-function to the development of hepatic steatosis in humans. Summary Statement: We define the physiological role of wild type PNPLA3 in maintaining hepatic VLDL-TG secretion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...